Exercice 1. (a) La probabilité que X égale à 1 est la probabilité qu’on tire une des 6 boules blanches. Puisqu’il y a $6 + 3 + 1 = 10$ boules dans la boîte, cette probabilité vaut $6/10$. Ainsi $\mathbb{P}(X = 1) = 6/10$. Le même raisonnement nous amène à

$$f_X(x) = \mathbb{P}(X = x) = \begin{cases} \frac{6}{10} & x = 1 \\ \frac{3}{10} & x = 5 \\ \frac{1}{10} & x = 10 \\ 0 & \text{sinon}. \end{cases}$$

(b) Nous trouvons la fonction de répartition grâce à un calcul direct :

$$F_X(x) = \mathbb{P}(X \leq x) = \begin{cases} 0 & x < 1 \\ \frac{6}{10} & 1 \leq x < 5 \\ \frac{6}{10} + \frac{3}{10} = \frac{9}{10} & 5 \leq x < 10 \\ 1 & x \geq 10. \end{cases}$$

(c) Voici la représentation graphique de la fonction de répartition. Remarquer la continuité à droite !

Exercice 2. Nous utilisons les formules pour un tirage sans remise qui se trouvent au chapitre 2.5 du livre du cours de Probabilités. Évidemment X ne peut prendre que les valeurs 0, 1, 2.
et 3, avec
\[\Pr(X = x) = \begin{cases} \frac{1}{30} & x = 0 \\ \frac{9}{30} & x = 1 \\ \frac{15}{30} & x = 2 \\ \frac{5}{30} & x = 3 \end{cases} \]

On voit bien que ces quatre probabilités somment à 1. Calculons
\[\mathbb{E}[X] = \frac{1}{30} \cdot 0 + \frac{9}{30} \cdot 1 + \frac{15}{30} \cdot 2 + \frac{5}{30} \cdot 3 = \frac{9}{5}; \]
\[\mathbb{E}[X^2] = \frac{1}{30} \cdot 0 + \frac{9}{30} \cdot 1 + \frac{4}{30} \cdot 2 + \frac{9}{30} \cdot 3 + \frac{5}{30} \cdot 4 = \frac{19}{5}; \]
et donc \(\text{Var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = 14/25 \). Une autre méthode, sans devoir évaluer \(\mathbb{E}[X^2] \), serait de calculer
\[\text{Var}[X] = \mathbb{E} \left[\left(X - \frac{9}{5} \right)^2 \right] = \frac{1}{30} \left(1 \cdot \left(0 - \frac{9}{5} \right)^2 + 9 \left(1 - \frac{9}{5} \right)^2 + 15 \left(2 - \frac{9}{5} \right)^2 + 5 \left(3 - \frac{9}{5} \right)^2 \right) = \frac{81 + 9 \cdot 16 + 15 \cdot 1 + 5 \cdot 36}{30 \cdot 25} = \frac{14}{25}. \]

Exercice 3. Nous appliquons la linéarité de l’espérance pour calculer
\[\mathbb{E} \left[\frac{X - \mu}{\sigma} \right] = \frac{1}{\sigma} \mathbb{E}[X - \mu] = \frac{1}{\sigma} (\mathbb{E}[X] - \mathbb{E}[\mu]) = \frac{1}{\sigma} (\mu - \mu) = 0, \]
car l’espérance de la constante \(\mu \) égale \(\mu \). Aussi
\[\mathbb{E} \left[\left(\frac{X - \mu}{\sigma} \right)^2 \right] = \frac{1}{\sigma^2} \mathbb{E}[(X - \mu)^2] = \frac{1}{\sigma^2} \text{Var}[X] = 1. \]
par définition de la variance.
Ainsi, pour n’importe quelle variable aléatoire \(X \) de variance finie et non nulle, la variable aléatoire \(Z = (X - \mu)/\sigma \) a une espérance nulle et une variance égale à 1.

Exercice 4. Puisque \(X \) et \(Y \) sont indépendantes, \(\exp(tX) \) et \(\exp(sY) \) sont indépendantes pour chaque \(s, t \in \mathbb{R} \). Par conséquent \(\mathbb{E}[\exp(tX) \exp(sY)] = \mathbb{E}[\exp(tX)] \cdot \mathbb{E}[\exp(sY)] \). Prendre \(s = t \) pour obtenir
\[M_Z(t) = \mathbb{E}[^{(t(X + Y))] = \mathbb{E}[\exp(tX) \exp(tY)] = \mathbb{E}[\exp(tX)] \cdot \mathbb{E}[\exp(tY)] = M_X(t) \cdot M_Y(t), \]
pour autant que les deux éléments du côté droit de l’équation soient finis.

Exercice 5. (a) L’intégrale d’une fonction de densité vaut forcément 1. Donc
\[1 = \int_{-\infty}^{\infty} g(y) \, dy = c \int_{-1}^{1} y^2 \, dy = c \left(\frac{1}{3} - \frac{1}{3} \right) = \frac{2c}{3}. \]
Ainsi \(c = 3/2 \).
(b) La fonction de répartition \(F_Y \) se trouve en prenant l’intégrale de \(g \). Pour \(y \in]-1,1[\) nous avons

\[
F_Y(y) = \mathbb{P}(Y \leq y) = \int_{-1}^{y} cu^2 \, du = c \left(\frac{y^3}{3} - \frac{1}{3} \right) = \frac{y^3 + 1}{6}.
\]

Par conséquent \(F_Y(y) = \min(1, \max(0, (y^3 + 1)/2)) \), c’est-à-dire

\[
F_Y(y) = \mathbb{P}(Y \leq y) = \begin{cases} 0 & y \leq -1 \\ \frac{y^3 + 1}{2} & -1 < y < 1 \\ 1 & y \geq 1. \end{cases}
\]

(c) Puisque \(Y \) est une variable aléatoire continue, pour chaque \(y \in \mathbb{R} \), on a \(\mathbb{P}(Y = y) = 0 \). Par exemple si \(y = 0 \) on a pour \(\varepsilon \in]0,1[\) que

\[
0 \leq \mathbb{P}(Y = 0) \leq \mathbb{P}(-\varepsilon < Y \leq \varepsilon) = \mathbb{P}(Y \leq \varepsilon) - \mathbb{P}(Y \leq -\varepsilon) = \frac{\varepsilon^3 + 1}{2} - \frac{-\varepsilon^3 + 1}{2} = \varepsilon^3.
\]

En laissant \(\varepsilon \to 0 \) nous voyons effectivement que \(\mathbb{P}(Y = 0) = 0 \).

Donc \(\mathbb{P}(0 < Y < 1) = \mathbb{P}(0 < Y \leq 1) = F_Y(1) - F_Y(0) = 1 - 1/2 = 1/2 \) et \(\mathbb{P}(0 < Y \leq 3) = F_Y(3) - F_Y(0) = 1 - 1/2 = 1/2 \).

En fait la densité de \(Y \) est symétrique et nulle à l’extérieur de \([-1,1]\), ce qui implique

\[
1 = \mathbb{P}(-1 < Y < 1) = 2\mathbb{P}(0 < Y < 1).
\]

(d) On peut noter que l’espérance de \(Y \) est nulle puisque c’est une variable aléatoire dont la densité est symétrique ; autrement, calculons

\[
\mathbb{E}[Y] = \int_{-\infty}^{\infty} yg(y) \, dy = \int_{-1}^{1} cy^3 \, dy = \frac{3}{2} \left(\frac{1^4}{4} - \frac{(-1)^4}{4} \right) = 0;
\]

\[
\text{Var}[Y] = \mathbb{E}[Y^2] - (\mathbb{E}[Y])^2 = \mathbb{E}[Y^2] = \int_{-\infty}^{\infty} y^2 g(y) \, dy = \frac{3}{2} \left(\frac{1^5}{5} - \frac{(-1)^5}{5} \right) = \frac{3}{5}.
\]

Exercice 6. (a) Calculons

\[
M_X(t) = \mathbb{E}[\exp(tX)] = \int_{-\infty}^{\infty} \exp(tx) f(x) \, dx = \frac{1}{10} \int_{-10}^{\infty} \exp(x(t - 1/10)) \, dx.
\]

Cette intégrale est certainement infinie si \(t \geq 1/10 \). Dans le cas contraire, nous pouvons joyeusement conclure que

\[
M_X(t) = \frac{1}{10} \left(\frac{1}{1 - 10t} \right)^{-1} = \frac{1}{1 - 10t}; \quad R_X(t) = \ln(M_X(t)) = -\ln(1 - 10t).
\]

(b) Par les propriétés de la fonction génératrice des moments,

\[
\mathbb{E}[X] = M_X'(0) = \frac{10}{(1 - 10t)^2} \bigg|_{t=0} = 10; \quad \mathbb{E}[X] = R_X'(0) = \frac{10}{1 - 10t} \bigg|_{t=0} = 10;
\]

\[
\mathbb{E}[X^2] = M''_X(0) = \frac{200}{(1 - 10t)^3} \bigg|_{t=0} = 200; \quad \text{Var}[X] = R''_X(0) = \frac{100}{(1 - 10t)^2} \bigg|_{t=0} = 100;
\]

\[
\text{Var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = 100.
\]

Remarque. \(X \) est une variable aléatoire exponentielle de paramètre \(\lambda = 1/10 \).