Preprints

Yun, H. & Panaretos, V.M.
Computerized Tomography and Reproducing Kernels.

Santoro, L.V., & Panaretos, V.M.
Random Flows of Covariance Operators and their Statistical Inference.

Waghmare, K.G., & Panaretos, V.M.
The Positive-Definite Completion Problem.

Waghmare, K.G., Masak, T. & Panaretos, V.M.
The Functional Graphical Lasso.

Ghodrati, L. & Panaretos, V.M.
Transportation of Measure Regression in Higher Dimensions.

Santoro, L.V., & Panaretos, V.M.
Large Sample Theory for Bures–Wasserstein Barycentres.

Santoro, L.V., Waghmare, K.G. & Panaretos, V.M.

Waghmare, K.G. & Panaretos, V.M.
Continuously Indexed Graphical Models.

Masarotto, V., Panaretos, V.M. & Zemel, Y.
Transportation-Based Functional ANOVA and PCA for Covariance Operators.
arXiv:2212.04797 (33 pages).
Papers

Ghodrati, L. & Panaretos, V.M.
On Distributional Autoregression and Iterated Transportation.

Mohammadi, N., Santoro, L.V. & Panaretos, V.M. (2024)
Nonparametric Estimation for SDE with Sparsely Sampled Paths: an FDA Perspective.
*Stochastic Processes and their Applications*, 167, 104239.

Mohammadi, N. & Panaretos, V.M. (2024)
Functional Data Analysis with Rough Sample Paths?

Masak, T. & Panaretos, V.M. (2023)
Random Surface Covariance Estimation by Shifted Partial Tracing.

Mohammadi, N. & Panaretos, V.M. (2023)
Detecting Whether a Stochastic Process is Finitely Expressed in a Basis.
*Applied and Computational Harmonic Analysis*, 67, 101578.

Masak, T., Sarkar, S. & Panaretos, V.M. (2023)
Separable Expansions for Covariance Estimation via the Partial Inner Product.

Ghodrati, L. & Panaretos, V.M. (2023)
Minimax Rate for Optimal Transport Regression Between Distributions.

Chakraborty, A. & Panaretos, V.M. (2022)

Waghmare, K. & Panaretos, V.M. (2022)
The Completion of Covariance Kernels.

Sarkar, S. & Panaretos, V.M. (2022)
Covariance Networks for Functional Data on Multidimensional Domains.

Ghodrati, L. & Panaretos, V.M. (2022)
Distribution-on-Distribution Regression via Optimal Transport Maps.

Masak, T., Rubin, T. & Panaretos, V.M. (2022)
Inference and Computation for Sparsely Sampled Random Surfaces.
Functional Estimation of Anisotropic Covariance and Autocovariance Operators on the Sphere.

Caponera, A. & Panaretos, V.M. (2022)
On the Rate of Convergence for the Autocorrelation Operator in Functional Autoregression.

Chakraborty, A. & Panaretos, V.M. (2021)
Functional Registration and Local Variations: Identifiability, Rank, and Tuning.
Bernoulli 27 (2):1103–1130.

Rubin, T. & Panaretos, V.M. (2020)
Functional Lagged Regression with Sparse Noisy Observations.

Rubin, T. & Panaretos, V.M. (2020)

Statistical Aspects of Wasserstein Distances.

Recovering Covariance from Functional Fragments.

Procrustes Metrics on Covariance Operators and Optimal Coupling of Gaussian Processes.

Hybrid regularisation and the (in)admissibility of ridge regression in infinite dimensional Hilbert spaces.

Functional Data Analysis By Matrix Completion.

Fréchet Means and Procrustes Analysis in Wasserstein Space.

Pham, T. & Panaretos, V.M. (2018)
Methodology and Convergence Rates for Functional Time Series Regression.
Statistica Sinica, 28: 2521–2539 (Special Issue in Memory of Peter Hall).


A Conversation with David R. Brillinger.

Second–Order Comparison of Gaussian Random Functions and the Geometry of DNA Minicircles.

On Random Tomography With Unobservable Projection Angles.

Representation of Radon Shape Diffusions via Hyperspherical Brownian Motion.

Partially Observed Branching Processes for Stochastic Epidemics.

The Diffusion of Radon Shape.

Books and Monographs

Panaretos, V. M. & Zemel, Y. (2020)
An Invitation to Statistics in Wasserstein Space.

Statistics for Mathematicians: A Rigorous First Course.
Compact Textbooks in Mathematics, Birkhäuser.

Statistique pour Mathématiciens: Un Premier Cours Rigoureux.
Presses Polytechniques et Universitaires Romands.

Book Chapters

Commentary on Selected Mathematical Papers of D.R. Brillinger.
In Selected Works of David Brillinger (ed. P. Guttorp), Springer.
Panaretos, V. M. (2012). A Statistician’s View on Deconvolution and Unfolding